Compact Riemann Surfaces

100 Points

Notes.

(a) Justify all your steps. Use only those results that have been proved in class unless you have been asked to prove the same.

- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.
- (c) For a Riemann surface X,

 \mathcal{O}_X = the sheaf of holomorphic functions on X,

 \mathcal{E}_X = the sheaf of complex-valued C^{∞} -functions on X,

- Ω_X = the sheaf of holomorphic 1-forms on X.
- (d) \mathbb{P}^1 = the Riemann sphere.

1. [10 points] For a Riemann surface X, show that the total space $|\mathcal{E}_X|$ is never Hausdorff.

2. [5 points] Let U be an open subset of \mathbb{C} with z = x + iy the coordinate function. Express $\frac{\partial^2}{\partial z \partial \bar{z}}$ in terms of linear combinations, products or compositions of $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.

3. [20 points] Give an example of a Riemann surface X, and a closed form ω of type (0, 1) on X which is not exact. Moreover:

- (i) Find an open cover $\{V_i\}$ of X such that $\omega|_{V_i}$ is exact.
- (ii) Find a closed curve c(t) such that $\int_c \omega \neq 0$.
- 4. [25 points]
 - (i) Show that for any Riemann surface X, every point admits a neighbourhood U over which the sheaves \mathcal{O}_U and Ω_U are isomorphic.
 - (ii) Prove that $\Omega_{\mathbb{P}^1}(\mathbb{P}^1) = 0$.
 - (iii) More generally, prove that if ω is a nonzero meromorphic 1-form on \mathbb{P}^1 then the sum of orders of the poles of ω is at least 2.

[Thus, if you solve (iii), you may immediately deduce (ii) from (iii).]

5. [20 points] Let $\Gamma \subset \mathbb{C}$ be a lattice.

- (i) Let $X \xrightarrow{f} \mathbb{C}/\Gamma$ be a nonconstant holomorphic map of Riemann surfaces. Prove that $\Omega_X(X) \neq 0$.
- (ii) Using (i) or otherwise, deduce that any holomorphic map $\mathbb{P}^1 \to \mathbb{C}/\Gamma$ is constant.
- (iii) Give (without proof) an example of a nonconstant holomorphic map $\mathbb{C}/\Gamma \to \mathbb{P}^1$.

6. [20 points] Let X, Y be compact Riemann surfaces, and let $a_1, \ldots, a_n \in X, b_1, \ldots, b_m \in Y$. Set $X' := X \setminus \{a_1, \ldots, a_n\}, Y' := Y \setminus \{b_1, \ldots, b_m\}$. Show that every isomorphism $f : X' \to Y'$ extends to an isomorphism $\widetilde{f} : X \to Y$.

[Hint: Let V_j be a chart around b_j and $V_j^* := V_j \setminus \{b_j\}$ the corresponding punctured chart. Prove that there exists a punctured chart U_i^* around each a_i such that $f(U_i^*)$ lies inside some V_j^* .]